Male sterility derived from Satsuma mandarin (Citrus unshiu) has been used in Japanese citrus breeding programs to obtain seedless cultivars, which is a desirable trait for consumers. Male sterility has often been evaluated by anther development or pollen fertility; however, the inheritance and heritability of male sterility derived from Satsuma is poorly understood. In this study, we investigated the mode of inheritance and broad-sense heritability of male sterility derived from Satsuma. Initially, we evaluated the total number of pollen grains per anther and apparent pollen fertility, as indicated by lactophenol blue staining, in 15 citrus cultivars and selections to understand the male sterility of Satsuma. The results indicated that male sterility was primarily caused by decreased number of pollen grains per anther in progeny of Satsuma. We also evaluated these traits in three F1 populations (hyuganatsu × ‘Okitsu No. 56’, ‘Okitsu No. 46’ × ‘Okitsu No. 56’ and ‘Okitsu No. 46’ × ‘Kara’), of which the parents are derived from Satsuma. Individuals in these populations showed strong segregation for number of pollen grains per anther. The apparent fertility of pollen also showed segregation but was almost constant at 70%–90%. The estimated broad-sense heritability for the number of pollen grains per anther was as high as 0.898 in the ‘Okitsu No. 46’ × ‘Okitsu No. 56’ and ‘Okitsu No. 46’ × ‘Kara’ populations. These results indicated that the number of pollen grains per anther primarily determined male sterility among progeny of Satsuma, and this trait was inherited by the progeny. Development of DNA markers closely linked to male sterility using the F1 populations of ‘Okitsu No. 46’ × ‘Okitsu No. 56’ and ‘Okitsu No. 46’ × ‘Kara’ is expected to contribute to the breeding of novel seedless citrus cultivars.