Citrus reproductive biology is complex. One of its characteristic features is parthenocarpy that enables seedless fruit production. Citrus parthenocarpy and self-incompatibility knowledge is only partial and sometimes discrepant. Increasing such knowledge is relevant for better managing cultivated varieties and improving the selection of parents in breeding strategies to recover seedless varieties such as mandarins. This work develops an efficient protocol to characterize self-incompatibility and different parthenocarpy types based on emasculation, hand self-pollination, and hand cross-pollination. It analyzes fruit setting and seed production coupled with histological pollen performance observations. We analyzed the reproductive behavior of nine mandarin varieties with relevant characteristics as parents for seedless mandarin breeding. ‘Clemenules’ clementine and ‘Moncada’ mandarins were strictly self-incompatible with facultative and vegetative parthenocarpy; ‘Imperial’ mandarin and ‘Ellendale’ tangor displayed no strict self-incompatibility associated with facultative and vegetative parthenocarpy; ‘Fortune’ mandarin was self-incompatible with facultative and stimulative parthenocarpy; ‘Campeona’ and ‘Salteñita’ mandarins were self-compatible with vegetative parthenocarpy; ‘Serafines’ satsuma was associated with male sterility together with facultative and vegetative parthenocarpy; and ‘Monreal’ clementine was self-compatible and nonparthenocarpic. Our protocol can be applied for screening of mandarin germplasm and to characterize new parents. Reproductive behavior knowledge is important for optimizing seedless mandarin breeding programs based on diploidy, triploidy, or induced mutagenesis.
Self-incompatibility (SI) is present in around half of all species of flowering plants. SI limits endogamy and contributes to increased genetic diversity. SI is a very important trait in citrus because, when coupled with parthenocarpy, it allows seedless fruit production. Otherwise, SI is an impediment to genetic studies and breeding programs. Temperature stress, bud pollination and polyploidization can induce the breakdown of the SI mechanism in several species. In this work, we investigated how the SI mechanism can be broken down in two self-incompatible diploid citrus genotypes: ‘Fortune’ mandarin and ‘Clemenules’ clementine. The influence of temperature stress on the SI mechanism was assessed in self-pollinated flowers of ‘Fortune’ mandarins subjected to 2 temperature regimes (10 °C and 30 °C), whereas the bud pollination effect was investigated in the same genotype and in ‘Clemenules’ clementines cultivated under field conditions. The tetraploid ‘Clemenules’ clementine cultivated under field conditions was used to study if tetraploidization can bypass the SI reaction. Histological observations of pollen tube growth and seed production in self-pollinated flowers were used to evaluate the breakdown of SI, while the genetic analysis with SSR and SNP markers confirmed that all recovered plants were zygotic and had been originated by selfing. Our results confirm that the SI reaction can be surpassed by temperature stress, bud pollination and tetraploidy. To our knowledge, this is the first report in citrus in which the SI reaction breakdown by these three different strategies is demonstrated by molecular markers.
Polyembryony and male sterility (MS) are essential characters for citrus breeding. MS, coupled with parthenocarpy, allows for addressing the diversification of diploid seedless mandarin varieties, and nucleocytoplasmic MS is the most prevalent system. Polyembryony limits the use of seed parents in scion breeding programs, and the recovery of monoembryonic hybrids to be used as female parents is a crucial pre-breeding component. The objectives of this work were the identification of SNPs closely linked with the genes implied in these traits for marker-assisted selection. Genotyping by sequencing was used to genotype 61 diploid hybrids from an F1 progeny recovered from crossing ‘Kiyomi’ and ‘Murcott’ tangors. A total of 6444 segregating markers were identified and used to establish the two parental genetic maps. They consisted of 1374 and 697 markers encompassing 1416.287 and 1339.735 cM for ‘Kiyomi’ and ‘Murcott’, respectively. Phenotyping for MS and polyembryony was performed. The genotype–trait association study identified a genomic region on LG8 which was significantly associated with MS, and a genomic region on LG1 which was significantly associated with polyembryony. Annotation of the identified region for MS revealed 19 candidate genes. One SNP KASPar marker was developed and fully validated for each trait.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.