BACKGROUND: House dust contains many organic contaminants that can compete with the thyroid hormone (TH) thyroxine (T 4 ) for binding to transthyretin (TTR). How these contaminants work together at levels found in humans and how displacement from TTR in vitro relates to in vivo T 4 -TTR binding is unknown. OBJECTIVES: Our aims were to determine the TTR-binding potency for contaminant mixtures as found in house dust, maternal serum, and infant serum; to study whether the TTR-binding potency of the mixtures follows the principle of concentration addition; and to extrapolate the in vitro TTRbinding potency to in vivo inhibition levels of T 4 -TTR binding in maternal and infant serum. METHODS: Twenty-five contaminants were tested for their in vitro capacity to compete for TTR-binding with a fluorescent FITC-T 4 probe. Three mixtures were reconstituted proportionally to median concentrations for these chemicals in house dust, maternal serum, or infant serum from Nordic countries. Measured concentration-response curves were compared with concentration-response curves predicted by concentration addition. For each reconstituted serum mixture, its inhibitor-TTR dissociation constant (K i ) was used to estimate inhibition levels of T 4 -TTR binding in human blood. RESULTS: The TTR-binding potency of the mixtures was well predicted by concentration addition. The ∼ 20% inhibition in FITC-T 4 binding observed for the mixtures reflecting median concentrations in maternal and infant serum was extrapolated to 1.3% inhibition of T 4 -TTR binding in maternal and 1.5% in infant blood. For nontested mixtures reflecting high-end serum concentrations, these estimates were 6.2% and 4.9%, respectively. DISCUSSION: The relatively low estimated inhibition levels at median exposure levels may explain why no relationship between exposure to TTRbinding compounds and circulating T 4 levels in humans has been reported, so far. We hypothesize, however, that 1.3% inhibition of T 4 -TTR binding may ultimately be decisive for reaching a status of maternal hypothyroidism or hypothyroxinemia associated with impaired neurodevelopment in children. https://doi.