While an evaluation of the estrous cycle in laboratory rodents can be a useful measure of the integrity of the hypothalamic-pituitary-ovarian reproductive axis, it can also serve as a way of insuring that animals exhibiting abnormal cycling patterns are disincluded from a study prior to exposure to a test compound. Assessment of vaginal cytology in regularly cycling animals also provides a means to establish a comparable endocrine milieu for animals at necropsy. The procedure for obtaining a vaginal smear is relatively non-invasive and is one to which animals can become readily accustomed. It requires few supplies, and with some experience the assessments can be easily performed in fresh, unstained smears, or in fixed, stained ones. When incorporated as an adjunct to other endpoint measures, a determination of a female's cycling status can contribute important information about the nature of a toxicant insult to the reproductive system. In doing so, it can help to integrate the data into a more comprehensive mechanistic portrait of the effect, and in terms of risk assessment, may provide some indication of a toxicant's impact on human reproductive physiology.
Thyroid uptake of iodide via the sodium-iodide symporter (NIS) is the first step in the biosynthesis of thyroid hormones that are critical for health and development in humans and wildlife. Despite having long been a known target of endocrine disrupting chemicals such as perchlorate, information regarding NIS inhibition activity is still unavailable for the vast majority of environmental chemicals. This study applied a previously validated high-throughput approach to screen for NIS inhibitors in the ToxCast phase I library, representing 293 important environmental chemicals. Here 310 blinded samples were screened in a tiered-approach using an initial single-concentration (100 μM) radioactive-iodide uptake (RAIU) assay, followed by 169 samples further evaluated in multi-concentration (0.001 μM-100 μM) testing in parallel RAIU and cell viability assays. A novel chemical ranking system that incorporates multi-concentration RAIU and cytotoxicity responses was also developed as a standardized method for chemical prioritization in current and future screenings. Representative chemical responses and thyroid effects of high-ranking chemicals are further discussed. This study significantly expands current knowledge of NIS inhibition potential in environmental chemicals and provides critical support to U.S. EPA's Endocrine Disruptor Screening Program (EDSP) initiative to expand coverage of thyroid molecular targets, as well as the development of thyroid adverse outcome pathways (AOPs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.