In this study, the use of Pinhão husk as a source of reinforcement material for development of edible films, where the Pinhão seed flour and bovine gelatin were used as matrices for the films. Mechanical properties, water vapor permeability, solubility and opacity, microstructure, and thermal degradation characterized the films produced. The films presented homogeneous and cohesive structures. Pinhão husk content positively affected film properties by increasing tensile strength (TS) and decreasing water vapor permeability (WVP), with Pinhão flour film formulations (5.0% Pinhão flour, 1.2% glycerol, and 0.4% Pinhão husk) and gelatin (5.0% gelatin, 2.0% glycerol, and 0.4% Pinhão husk) those that presented the best results (5.06 MPa for TS and 0.14 g.mm/kPa.h.m2 for WVP) and (3.88 MPa for TS and 0.28 g.mm/kPa.h.m2 for WVP), respectively The thermal degradation study revealed that the films are stable at temperatures below 150°C, losing only free water and volatile compounds of low molecular weight. Pinhão husk can reinforce films, making them suitable as biodegradable and edible packaging materials for eco‐friendly food products. This contributes to the circular economy, preserves biodiversity, and reduces plastic waste, offering promising sustainable packaging solutions.