BackgroundThere is an imperative necessity for alternative sources of energy able to reduce the world dependence of fossil oil. One of the most successful options is ethanol obtained mainly from sugarcane and corn fermentation. The foremost residue from sugarcane industry is the bagasse, a rich lignocellulosic raw material uses for the production of ethanol second generation (2G). New cellulolytic and hemicellulytic enzymes are needed, in order to optimize the degradation of bagasse and production of ethanol 2G.ResultsThe ability to produce hemicellulases and related enzymes, suitable for lignocellulosic biomass deconstruction, was explored using 110 endophytic fungi and 9 fungi isolated from spoiled books in Brazil. Two initial selections were performed, one employing the esculin gel diffusion assay, and the other by culturing on agar plate media with beechwood xylan and liquor from the hydrothermal pretreatment of sugar cane bagasse. A total of 56 isolates were then grown at 29°C on steam-exploded delignified sugar cane bagasse (DEB) plus soybean bran (SB) (3:1), with measurement of the xylanase, pectinase, β-glucosidase, CMCase, and FPase activities. Twelve strains were selected, and their enzyme extracts were assessed using different substrates. Finally, the best six strains were grown under xylan and pectin, and several glycohydrolases activities were also assessed. These strains were identified morphologically and by sequencing the internal transcribed spacer (ITS) regions and the partial β-tubulin gene (BT2). The best six strains were identified as Aspergillus niger DR02, Trichoderma atroviride DR17 and DR19, Alternaria sp. DR45, Annulohypoxylon stigyum DR47 and Talaromyces wortmannii DR49. These strains produced glycohydrolases with different profiles, and production was highly influenced by the carbon sources in the media.ConclusionsThe selected endophytic fungi Aspergillus niger DR02, Trichoderma atroviride DR17 and DR19, Alternaria sp. DR45, Annulohypoxylon stigyum DR47 and Talaromyces wortmannii DR49 are excellent producers of hydrolytic enzymes to be used as part of blends to decompose sugarcane biomass at industrial level.
A total of 297 endophytic fungi were isolated from 1728 leaf and stem fragments collected about twenty and forty days after germination from soybean (Glycine max (L.) Merril) plants grown in the field and a greenhouse. The fungi belonged to eight groups, six dematiaceous genera (Alternaria, Cladosporium, Chaetomium, Curvularia, Drechslera and Scopulariopsis) and the non-dematiaceous genera Acremonium, Aspergillus, Colletotrichum, Fusarium, Paecilomyces and Penicillium along with some Mycelia sterilia.. There were qualitative and quantitative differences in the type and number of isolates obtained from greenhouse and field-grown plants, with more isolates being obtained from the latter. No difference was found in the number of fungi isolated from leaves and stems irrespective of where the plants was grown. For was field-grown plants, the number of isolates decreased as the plants aged and more fungi were found in tissues near the soil, while for greenhouse-grown plants the number of isolates increased as the plants aged but in this case no more fungi were isolated from those tissues nearer the soil. These results could have biotechnological relevance for the biological control of pests or plant growth promotion.
A partir de 1728 fragmentos de hastes e folhas de soja (Glycine max (L.) Merril). provenientes de plantas do campo e de casa de vegetação, coletadas cerca de 20 e 40 dias após a germinação das sementes, 297 fungos endofíticos foram isolados. Os gêneros encontrados foram: Alternaria, Cladosporium, Curvularia, Chaetomium, Scopulariopsis, Drechslera (todos dematiáceos) além de Colletotrichum, Fusarium, Acremonium, Aspergillus, Penicillium, Paecilomyces e Mycelia sterilia. Foram detectadas diferenças qualitativas e quantitativas entre os isolados, em relação a micobiota de hospedeiros provenientes do campo e de casa de vegetação com maior frequência de fungos isolados de plantas no campo em comparação com as de casa de vegetação. Houve diminuição da frequência de fungos com a idade das plantas crescidas no campo, ocorrendo o inverso com as da casa de vegetação, mas em ambos os casos, não houve diferença no número de fungos isolados de hastes e de folhas. Houve em plantas crescidas no campo uma maior incidência nas regiões próximas ao solo o que não ocorreu nas plantas provenientes da casa de vegetação. Os resultados podem ser de utilidade do ponto de vista biotecnológico pelo uso de endófitos introduzidos deliberadamente em plantas visando o controle biológico de pestes ou promoção de crescimento vegetal
In the present study, a cassava starch‐glycerol film with reinforcement of Pinus sp. nanofibers (NFC) incorporated with tea tree (Melaleuca alternifolia) essential oil (TTO) were prepared by casting technique. The physical (barrier, mechanical, and optical), structural, and antimicrobial properties of the films were evaluated and compared with the control films. Films with 0.08% TTO exhibited a significant increase in the tensile strength (TS) while films with 1.5% TTO showed a decrease in TS, suggesting a crosslinking effect. The addition of 1.5% TTO reduced the water vapor permeability values in 43% comparing to the control films. Analysis obtained by Fourier transform infrared spectroscopy showed bands related to the interaction between TTO and matrix for films with 1.5% TTO and 0.3% NFC. This film was effective against Staphylococcus aureus and Candida albicans which could be applied for several packaging purposes. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48726.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.