This research enhances ethanol sensing with Fe-doped tetragonal SnO2 films on glass, improving gas sensor reliability and sensitivity. The primary objective was to improve the sensitivity and operational efficiency of SnO2 sensors through Fe doping. The SnO2 sensors were synthesized using a flexible and adaptable method that allows for precise doping control, with energy-dispersive X-ray spectroscopy (EDX) confirming homogeneous Fe distribution within the SnO2 matrix. A morphological analysis showed a surface structure ideal for gas sensing. The results demonstrated significant improvement in ethanol response (1 to 20 ppm) and lower temperatures compared to undoped SnO2 sensors. The Fe-doped sensors exhibited higher sensitivity, enabling the detection of low ethanol concentrations and showing rapid response and recovery times. These findings suggest that Fe doping enhances the interaction between ethanol molecules and the sensor surface, improving performance. A mathematical model based on diffusion in porous media was employed to further analyze and optimize sensor performance. The model considers the diffusion of ethanol molecules through the porous SnO2 matrix, considering factors such as surface morphology and doping concentration. Additionally, the choice of electrode material plays a crucial role in extending the sensor’s lifespan, highlighting the importance of material selection in sensor design.