Alcohol abuse is the dominant cause of fatal car accidents (about 25% of all road deaths in Europe). The large-scale implementation of systems aimed at the realization of in-vehicle driver breath ethanol detection is therefore in high demand. For this reason, we devoted our attention to the design of an inexpensive and reliable breath alcohol sensor for use in an Advanced Driver Assistance System (ADAS). The main challenge in the development of this sensor is related to the complexity of breath composition and its high humidity content, coupled with the high dilution of breath reaching the sensor. In this work, a simple α-Fe2O3 film-based sensor was developed and validated in laboratory tests. Tests were also performed by placing the ethanol sensor within the casing of the upper steering column of a car to simulate real driving conditions. Using an array provided with the developed ethanol sensor and humidity, temperature and CO2 sensors, it was possible to differentiate the signal of a driver’s breath before and after alcohol consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.