We report here the control of potato tuber moth (Phthorimaea operculella) by incorporating a truncated Bacillus thuringiensis cry9Aa2 gene in the plastid genome. Plasmids pSKC84 and pSKC85 are derivatives of a new polycistronic plastid transformation vector, pPRV312L, that carries spectinomycin resistance (aadA) as a selective marker and targets insertions in the trnI-trnA intergenic region. The Cry9Aa2 N-terminal region (82.1 kDa; 734 amino acids) was expressed in a cassette, which consists of 49 nucleotides of the cry9Aa2 leader and the 3'-untranslated region of the plastid rbcL gene (TrbcL), and relies on readthrough transcription from the plastid rRNA operon. In a tobacco leaf bioassay, expression of Cry9Aa2 conferred resistance to potato tuber moth. In accordance, the Cry9Aa2 insecticidal protein accumulated to high levels, approximately 10% of the total soluble cellular protein and approximately 20% in the membrane fraction. However, high-level Cry9Aa2 expression significantly delayed plant development. Thus, a practical system to control potato tuber moth by Cry9Aa2 expression calls for down-regulation of its expression.