The solvent-dependent polymorphism of the active pharmaceutical ingredient (API) carbamazepine is interpreted from calculations of the solid-state and API-solvent intermolecular interactions. These simulations suggested that apolar solute-solute interactions could be disrupted by apolar solvents. In contrast, the polar solute-solute interactions were found to be easily disrupted by polar and protic solvents. This is consistent with experimental observations that the crystallization of the metastable form II is more dominant in apolar solvents. The Mercury program remains the gold standard in terms of usability; however, further expansion into more complex simulation techniques could make this package of even greater use in pharmaceutical manufacturing workflows.