Objective. Specific HLA class II alleles are associated with susceptibility to systemic lupus erythematosus (SLE). The role of HLA class II molecules in SLE pathogenesis remains unclear, although anti-DNA antibodies are specific to SLE and correlate with disease activity. We previously demonstrated that misfolded proteins bound to HLA class II molecules are specific targets for the autoantibodies produced in autoimmune diseases. This study was undertaken to validate our hypothesis that DNA binds to HLA class II molecules in a manner similar to that of misfolded proteins and that DNA bound to HLA class II molecules is involved in SLE pathogenesis.Methods. We analyzed the binding of DNA to HLA class II molecules, as well as the response of cells expressing anti-DNA B cell receptors (BCRs) to cells expressing the DNA/HLA class II complex.Results. Efficient binding of DNA to HLA class II molecules was observed in risk alleles of SLE, such as HLA-DRB1*15:01. The efficiency of DNA binding to each HLA-DR allele was positively associated with the risk of SLE conferred by the HLA-DR allele. In addition, reporter cells carrying anti-DNA BCRs were activated by cells expressing DNA/HLA class II complexes.Conclusion. These results provide evidence that DNA bound to HLA class II molecules is involved in SLE pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.