In order to analyse failures of an ageing water pipe, some methods such as the loss-of-section require remaining wall thickness (RWT) along the pipe to be fully known, which can be measured by the magnetism based non-destructive evaluation sensors though they are practically slow due to the magnetic penetrating process. That is, fully measuring RWT at every location in a water pipe is not really practical if RWT inspection causes disruption of water supply to customers. Thus, this paper proposes a new data prediction approach that can increase amount of RWT data of a corroded water pipe collected in a given period of time by only measuring RWT on a part (e.g. 20%) of the total pipe surface area and then employing the measurements to predict RWT at unmeasured area. It is proposed to utilize a marginal distribution to convert the non-Gaussian RWT measurements to the standard normally distributed data, which can then be input into a 3-dimensional Gaussian process model for efficiently predicting RWT at unmeasured locations on the pipe. The proposed approach was implemented in two real-life in-service pipes, and the obtained results demonstrate its practicality.