A scanning electron microscope (SEM) provides real-time imaging with nanometer resolution and a large scanning area, which enables the development and integration of robotic nanomanipulation systems inside a vacuum chamber to realize simultaneous imaging and direct interactions with nanoscaled samples. Emerging techniques for nanorobotic manipulation during SEM imaging enable the characterization of nanomaterials and nanostructures and the prototyping/assembly of nanodevices. This paper presents a comprehensive survey of recent advances in nanorobotic manipulation, including the development of nanomanipulation platforms, tools, changeable toolboxes, sensing units, control strategies, electron beam-induced deposition approaches, automation techniques, and nanomanipulation-enabled applications and discoveries. The limitations of the existing technologies and prospects for new technologies are also discussed.