Spatial patterns of biodiversity are inextricably linked to their collection methods, yet no synthesis of bias patterns or their consequences exists. As such, views of organismal distribution and the ecosystems they make up may be incorrect, undermining countless ecological and evolutionary studies. Using 742 million records of 374 900 species, we explore the global patterns and impacts of biases related to taxonomy, accessibility, ecotype and data type across terrestrial and marine systems. Pervasive sampling and observation biases exist across animals, with only 6.74% of the globe sampled, and disproportionately poor tropical sampling. High elevations and deep seas are particularly unknown. Over 50% of records in most groups account for under 2% of species and citizen‐science only exacerbates biases. Additional data will be needed to overcome many of these biases, but we must increasingly value data publication to bridge this gap and better represent species' distributions from more distant and inaccessible areas, and provide the necessary basis for conservation and management.
In this paper, adaptive neural control is investigated for a class of unknown multiple-input multiple-output nonlinear systems with time-varying asymmetric output constraints. To ensure constraint satisfaction, we employ a system transformation technique to transform the original constrained (in the sense of the output restrictions) system into an equivalent unconstrained one, whose stability is sufficient to solve the output constraint problem. It is shown that output tracking is achieved without violation of the output constraint. More specifically, we can shape the system performance arbitrarily on transient and steady-state stages with the output evolving in predefined time-varying boundaries all the time. A single neural network, whose weights are tuned online, is used in our design to approximate the unknown functions in the system dynamics, while the singularity problem of the control coefficient matrix is avoided without assumption on the prior knowledge of control input's bound. All the signals in the closed-loop system are proved to be semiglobally uniformly ultimately bounded via Lyapunov synthesis. Finally, the merits of the proposed controller are verified in the simulation environment.
A scanning electron microscope (SEM) provides real-time imaging with nanometer resolution and a large scanning area, which enables the development and integration of robotic nanomanipulation systems inside a vacuum chamber to realize simultaneous imaging and direct interactions with nanoscaled samples. Emerging techniques for nanorobotic manipulation during SEM imaging enable the characterization of nanomaterials and nanostructures and the prototyping/assembly of nanodevices. This paper presents a comprehensive survey of recent advances in nanorobotic manipulation, including the development of nanomanipulation platforms, tools, changeable toolboxes, sensing units, control strategies, electron beam-induced deposition approaches, automation techniques, and nanomanipulation-enabled applications and discoveries. The limitations of the existing technologies and prospects for new technologies are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.