Various techniques for producing fixed joints in solid using electromagnetic fields are considered; basic diagrams, physics, features, and technical capabilities of each method are described. It is shown that thin-walled tubular irregular structures can be obtained under the magnetic-pulse moulding welding that joins the combined actions of induced currents passing through the overlap zone and magnetic pressure for apposing the weldable edges and for shaping in accordance with the matrix configuration. Obtaining joints from dissimilar materials and structures of different thicknesses is implemented due to shock pulse capacitor welding with magnetic pulse drive. The series connection of the weldable parts enables to synchronize the current flow and force impact on the weld junction. Depending on the combination of the weldable products, three techniques of shock pulse capacitor welding with magnetic pulse drive are proposed. To intensify the quality improvement of the female connectors obtained, it is proposed to use the magnetic-pulse welding in vacuum instead of the diffusion welding. Preheating of the complete unit in vacuum allows for the pre-activation of the connectable surfaces. A unique feature of the implemented diagram is a remote action on the telescopic joints of dissimilar alloys heated in vacuum to the pre-melting temperatures through a quartz glass.