Fresh fish is a perishable food in which chemical (namely oxidation) and microbiological degradation result in undesirable odor. Non-processed fish (i.e., raw fish) is increasingly commercialized in packaging systems which are convenient for its retailing and/or which can promote an extension of its shelf-life. Compared to fish sent to its retail unpackaged, fish packaging results in a modification of the gaseous composition of the atmosphere surrounding it. These modifications of atmosphere composition may affect both chemical and microbiological degradation pathways of fish constituents and thereby the volatile organic compounds produced. In addition to monitoring Total Volatile Basic Nitrogen (TVB-N), which is a common indicator to estimate non-processed fish freshness, analytical techniques such as gas chromatography coupled to mass spectrometry or techniques referred to as “electronic nose” allow either the identification of the entire set of these volatile compounds (the volatilome) and/or to selectively monitor some of them, respectively. Interestingly, monitoring these volatile organic compounds along fish storage might allow the identification of early-stage markers of fish alteration. In this context, to provide relevant information for the identification of volatile markers of non-processed packaged fish quality evolution during its storage, the following items have been successively reviewed: (1) inner atmosphere gaseous composition and evolution as a function of fish packaging systems; (2) fish constituents degradation pathways and analytical methods to monitor fish degradation with a focus on volatilome analysis; and (3) the effect of different factors affecting fish preservation (temperature, inner atmosphere composition, application of hurdle technology) on volatilome composition.