An X-band multi-parameter phased array weather radar (MP-PAWR) was developed in 2017. The scan concept of the MP-PAWR is electronic scanning in elevation by combining fan beam transmissions and pencil beam receptions with digital beam-forming techniques and mechanical scanning along the azimuth. The MP-PAWR realized three-dimensional (60 km in radius and 15 km in height) observations without gaps of 30 s. Although the MP-PAWR is supposed to be suitable for observations of rapidly changing convective systems, it can be advantageous for observations of stratiform rainfall because of continuous vertical pointing observations and its ability to apply the Velocity Azimuth Display (VAD) method with a constant radius for a vertical profile of dynamic parameters such as divergence and deformation. In this study, a precipitation system that existed mainly above the freezing level (in this case, it was approximately 5 km in height) observed from 14:00 to 17:00 Japan Standard Time on 6 September 2018 was analyzed using MP-PAWR data. The averaged area of the vertical profile of Z, and the Doppler velocity with fixed elevation showed a stationary structure with time. The average differential reflectivity factor (ZDR) profile with fixed elevation angles showed values that were close to zero and increased with height. Similar characteristics were shown in the average Specific Differential Phase (KDP) profile. Vertical pointing data, especially for Z, ZDR, and Doppler velocity, were utilized when the echo passed over the radar site, and the Doppler velocity showed the acceleration of fall speed below the freezing level. The vertical profile of divergence with a fixed radius was calculated using the VAD method, and the vertical velocity was calculated using the fall speed profile from the vertical pointing data and by assuming the vertical velocity at the cloud base was zero. The results indicate that the updraft region corresponds to higher ZDR and KDP regions.