Assembly supply chain systems are becoming increasingly complex and, as a result, there is more and more need to design and manage them in a way that benefits the producers and also satisfies the interests of community stakeholders. The structural (static) complexity of assembly supply chain networks is one of the most important factors influencing overall system complexity. Structures of such networks can be modeled as a graph, with machines as nodes and material flow between the nodes as links. The purpose of this paper is to analyze existing assembly supply chain complexity assessment methods and propose such complexity metric(s) that will be able to accurately reflect not only specific criteria for static complexity measures, but also selected sustainability aspects. The obtained results of this research showed that selected complexity indicators reflect sustainability facets in different ways, but one of them met the mentioned requirements acceptably.