The tonsil crypt epithelium contains membranous (M)-cells that transport antigens from the lumen to underlying lymphoid cells, thereby initiating specific immune responses. Mechanisms mediating the adhesion of antigens to the M-cell surface are important for effective and selective uptake of potential pathogens but are still poorly understood. Therefore, the carbohydrates present on crypt epithelial cells of the rabbit palatine tonsil were studied by lectin histochemistry. Ultrathin LR White sections were incubated with a panel of eight lectins conjugated to colloidal gold or biotin. The glycocalyx of the apical membrane of M-cells was selectively labeled by UEA-I, LTA, HPA, and VVA, whereas that of the remaining squamous epithelial cells preferentially bound RCA-I and PNA. WGA and ConA showed only little binding, with no discernible preference for any of the cell types. Double labeling of UEA-1 together with anti-vimentin antibodies revealed that UEA-I-positive epithelial cells also contained the rabbit M-cell marker vimentin, and vice versa. The results show that a specific composition of glycoconjugates, which differs from that on squamous epithelial cells, is found on M-cells of the rabbit tonsil. The M-cell-specific glycoproteins and glycolipids could be selectively targeted by microorganisms that adhere to M-cells and enter the host along this pathway.