For use as fuel cladding of liquid metal fast reactors, Fe-0.12C-9Cr-2W ODS martensitic steel claddings were developed by cold-rolling under the softened ferrite phase induced by slow cooling from austenite phase, subsequently by ferrite to austenite phase transformation to break up substantially elongated grains produced by cold-rolling at the final heat-treatment. The produced claddings showed noticeable improvement in tensile and creep rupture strength that are considerably superior to PNC-FMS and even austenitic PNC316 at higher temperature and extended time to rupture. The strength improvement is mainly attributed to titanium addition in ODS martensitic steels through its reduction of Y 2 O 3 particle size and shortening inter-particles spacing. The behavior of oxide particle size reduction is associated with stoichiometry between Y 2 O 3 and TiO 2 .