Bisphenol A (BPA) and nonylphenol (NP) were treated with manganese peroxidase (MnP) and laccase prepared from the culture of lignin-degrading fungi. Laccase in the presence of 1-hydroxybenzotriazole (HBT), the so-called laccase-mediator system, was also applied to remove the estrogenic activity. Both chemicals disappeared in the reaction mixture within a 1-h treatment with MnP but the estrogenic activities of BPA and NP still remained 40% and 60% in the reaction mixtures after a 1-h and a 3-h treatment, respectively. Extension of the treatment time to 12 h completed the removal of estrogenic activities of BPA and NP. The laccase has less ability to remove these activities than MnP, but the laccase-HBT system was able to remove the activities in 6 h. A gel permeation chromatography (GPC) analysis revealed that main reaction products of BPA and NP may be oligomers formed by the action of enzymes. Enzymatic treatments extended to 48 h did not regenerate the estrogenic activities, suggesting that the ligninolytic enzymes are effective for the removal of the estrogenic activities of BPA and NP.
An investigation was performed to determine whether lignin dehydrogenative polymerization proceeds via radical mediation or direct oxidation by peroxidases. It was found that coniferyl alcohol radical transferred quickly to sinapyl alcohol. The transfer to syringaresinol was slower, however, the transfer to polymeric lignols occurred very slightly. This result suggests that the radical mediator theory does not su⁄ciently explain the mechanism for dehydrogenative polymerization of lignin. A cationic cell wall peroxidase (CWPO-C) from poplar (Populus alba L.) callus showed a strong substrate preference for sinapyl alcohol and the sinapyl alcohol dimer, syringaresinol. Moreover, CWPO-C was capable of oxidizing high-molecular-weight sinapyl alcohol polymers and ferrocytochrome c. Therefore, the CWPO-C characteristics are important to produce polymer lignin. The results suggest that CWPO-C may be a peroxidase isoenzyme responsible for the ligni¢cation of plant cell walls.
We investigated whether manganese peroxidase (MnP) and the laccase-mediator system with 1-hydroxybenzotriazole (HBT) as mediator can remove the estrogenic activities of the steroidal hormones 17beta-estradiol (E(2)) and ethinylestradiol (EE(2)). Using the yeast two-hybrid assay system, we confirmed that the estrogenic activities of E(2) and EE(2) are much higher than those of bisphenol A and nonylphenol. Greater than 80% of the estrogenic activities of E(2) and EE(2) were removed following 1-h treatment with MnP or the laccase-HBT system; extending the treatment time to 8h removed the remaining estrogenic activity of both steroidal hormones. HPLC analysis demonstrated that E(2) and EE(2) had disappeared almost completely in the reaction mixture after a 1-h treatment. These results strongly suggest that these ligninolytic enzymes are effective in removing the estrogenic activities of E(2) and EE(2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.