R E S U M OAtualmente, novas técnicas de processamento de dados, tais como redes neurais, lógica nebulosa (fuzzy) e sistemas híbridos, são utilizadas para elaborar modelos de predição em sistemas complexos e estimar parâmetros desejados. Neste artigo investigou-se a habilidade de se desenvolver um modelo de inferência adaptativo neuro fuzzy para estimação da produtividade de trigo utilizando-se uma base de dados da combinação dos seguintes tratamentos: cinco doses de N (0, 50, 100, 150 e 200 kg ha -1 ); três fontes (Entec, sulfato de amônio e ureia); duas épocas de aplicação de N (na semeadura ou em cobertura) e dois cultivares de trigo (E21 e IAC 370), avaliados durante dois anos, em Selvíria, MS. Através dos dados de entrada e saída o sistema de inferência neuro fuzzy adaptativo apreende e posteriormente pode estimar um novo valor de produção de trigo com base em doses diferenciadas de N. O erro de predição da produtividade de trigo em função das cinco doses de N, obtido com o sistema neuro fuzzy, foi menor que o valor obtido utilizando-se uma aproximação quadrática. Os resultados mostraram que o sistema neuro fuzzy é viável para desenvolver um modelo de predição visando estimar a produtividade de trigo em função da dose de N.Estimate of wheat grain yield as function of nitrogen fertilization using neuro fuzzy modeling
A B S T R A C TCurrently new techniques for data processing, such as neural networks, fuzzy logic and hybrid systems are used to develop predictive models of complex systems and to estimate the desired parameters. In this article the use of an adaptive neuro fuzzy inference system was investigated to estimate the productivity of wheat, using a database of combination of the following treatments: five N doses (0, 50, 100, 150 and 200 kg ha -1 ), three sources (Entec, ammonium sulfate and urea), two application times of N (at sowing or at side-dressing) and two wheat cultivars (IAC 370 and E21), that were evaluated during two years in Selvíria, Mato Grosso do Sul, Brazil. Through the input and output data, the system of adaptive neuro fuzzy inference learns, and then can estimate a new value of wheat yield with different N doses. The productivity prediciton error of wheat in function of five N doses, using a neuro fuzzy system, was smaller than that one obtained with a quadratic approximation. The results show that the neuro fuzzy system is a viable prediction model for estimating the wheat yield in function of N doses.
Palavras-chave:
IntroduçãoAs condições de solo, clima e topografia, favoráveis ao cultivo de trigo, tanto de sequeiro como irrigado em épocas e altitudes definidas pela pesquisa, fazem do Brasil Central uma região de enorme potencial para a expansão desta cultura com a perspectiva de propiciar, a médio prazo, a autossuficiência na produção nacional. Outrossim, a inserção do trigo no Cerrado contribui para diversificar os sistemas produtivos regionais agregando elementos para a sustentabilidade de produção nesse ecossistema brasileiro (RCCBPT, 2005).A utilização de cultivares de tr...