A Zn2TiO4 crystalline photovoltaic glass ink was prepared by fast firing at 700 °C for 5 min by the glass crystallisation method, which effectively improved the reflectivity and acid resistance of the photovoltaic glass ink coating. The phase, morphology and properties of the samples were tested by XRD, SEM and UV-vis diffuse reflection, etc. The enhanced reflectivity mechanism was proposed. The results showed that the increase in ZnO/SiO2 ratio reduced the transition temperature (Tg) and crystallisation temperature (Tp) of the glass melt, which could promote the crystallinity of Zn2TiO4 in photovoltaic glass ink coatings and thus improve the acid resistance of photovoltaic glass inks. Significant improvement in reflectance and whiteness is due to the Zn2TiO4 crystallinity growth, which fills in the pores of the ink surface, and TiO2 fillers keep almost the same surface roughness (0.2 µm) and wetting angle (5.2°). Typical samples achieved 89.2% of the whiteness and 88.0% of the reflectance, and the weight loss in acid was 3.9 mg/cm2, which could improve the efficiency of solar power generation.