Considerable progress has been made over the last decades in thermal spray technologies, practices and applications. However, like other technologies, they have to continuously evolve to meet new problems and market requirements. This article aims to identify the current challenges limiting the evolution of these technologies and to propose research directions and priorities to meet these challenges. It was prepared on the basis of a collection of short articles written by experts in thermal spray who were asked to present a snapshot of the current state of their specific field, give their views on current challenges faced by the field and provide some guidance as to the R&D required to meet these challenges. The article is divided in three sections that deal with the emerging thermal spray processes, coating properties and function, and biomedical, electronic, aerospace and energy generation applications.
Sliding wear evaluation of nanostructured coatings deposited by Suspension High Velocity OxyFuel (S-HVOF) and conventional HVOF (Jet Kote (HVOF-JK) and JP5000 (HVOF-JP)) spraying were evaluated. S-HVOF coatings were nanostructured and deposited via an aqueous based suspension of the WC-Co powder, using modified HVOF (TopGun) spraying. Microstructural evaluations of these hardmetal coatings included X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) equipped with Energy Dispersive X-ray Spectroscopy (EDX). Sliding wear tests on coatings were conducted using a ball-on-flat test rig against steel, silicon nitride (Si 3 N 4 ) ceramic and WC-6Co balls. Results indicated that nanosized particles inherited from the starting powder in S-HVOF spraying were retained in the resulting coatings. Significant changes in the chemical and phase composition were observed in the S-HVOF coatings. Despite decarburization, the hardness and sliding wear resistance of the S-HVOF coatings was comparable to the HVOF-JK and HVOF-JP coatings. The sliding wear performance was dependent on the ball-coating test couple. In general a higher ball wear rate was observed with lower coating wear rate. Comparison of the total (ball and coating) wear rate indicated that for steel and ceramic balls, HVOF-JP coatings performed the best followed by the S-HVOF and HVOF-JK coatings. For the WC-Co ball tests, average performance of S-HVOF was better than that of HVOF-JK and HVOF-JP coatings. Changes in sliding wear 1 Corresponding author R.Ahmed@hw.ac.uk 2 behavior were attributed to the support of metal matrix due to relatively higher tungsten, and uniform distribution of nanoparticles in the S-HVOF coating microstructure. The presence of tribofilm was also observed for all test couples.
This paper presents an overview of current research activities regarding the properties and functionalities of finely structured alumina (Al 2 O 3 ) and titania (TiO 2 ) coatings prepared by suspension plasma spraying and suspension HVOF spraying. A selection of new experimental results obtained by the authors is also included. In the case of Al 2 O 3 , focus was on the retention of a higher content of the a-phase in the coatings without any post-treatment or alloying. For TiO 2 , the goal was to preserve the initial anatase phase in order to obtain photocatalytically active titania coatings. Coating microstructures, phase compositions, and functionalities resulting from the interactions between different working parameters are discussed.
We studied the removal of nitrogen oxides pollutants via TiO 2 Degussa P25 powder by photocatalysis. Parameters such as mass of catalyst, geometric irradiated surface, catalyst morphology, and thermal treatment were tested to explain the photocatalytic concentration decrease of nitrogen oxides. According to our working conditions, the conversion rates increased until an optimal value of the TiO 2 weight, 35% of NO concentration and around 20% of NOx, was decomposed by the photocatalysis. The NOx removal increased proportionally with the irradiated geometric surface. The structural transformation of anatase to rutile performed by thermal treatment involved the decrease of the photocatalytic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.