Spectroradiometers exhibit the smallest aberration and the optimum response at the field-of-view (FOV) center. The aberration increases and the response deteriorates at positions further away from the FOV center, which leads to nonuniformity in the spectroradiometer FOV. In this study, a concentric-circles method for correcting the spectroradiometer FOV nonuniformity was developed. The calibration experiment for FOV nonuniformity was conducted by establishing the experimental platform. The nonuniformity correction coefficients were obtained and then used to fit the correction function curve within the whole FOV, allowing for correction of measurement targets with an arbitrary shape. The radiation intensity of the blackbody at different temperatures was obtained by measurement, and the nonuniformity coefficient was used to correct it. After correction, the error was within 1.84% for the spectrally integrated radiant intensity in the non-absorption band. Using this correction method, efficient calibration of spectroradiometer nonuniformity can be achieved, thereby enhancing the measurement accuracy of the spectroradiometer.