2018
DOI: 10.1016/j.oregeorev.2018.05.009
|View full text |Cite
|
Sign up to set email alerts
|

Development of the Ervidel-Roxo and Figueirinha-Albernoa volcanic sequences in the Iberian pyrite Belt, Portugal: Metallogenic and geodynamic implications

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
10
0
14

Year Published

2019
2019
2024
2024

Publication Types

Select...
6
1

Relationship

2
5

Authors

Journals

citations
Cited by 16 publications
(25 citation statements)
references
References 106 publications
1
10
0
14
Order By: Relevance
“…Identifying mineral pathfinders and developing their use for exploration require studying deposits to generate a detailed understanding of what controls the mineral composition and to what extent this reflects the chemical signature of the mineralization they are associated with. In the last decades, many studies have focused on mineral exploration tools based on fertility indicators and chemical vectoring (Kerrich and Wyman 1997;Kelley et al 2006;Jackson 2010;Cooke et al 2014;Wilkinson et al 2015;Champion and Huston 2016;McClenaghan and Layton-Matthews 2017;Soltani Dehnavi et al 2018;Dill 2018;Codeço et al 2018;Uribe-Mogollon and Maher 2018;Luz et al 2019). In that context, there is an increasing interest in using multivariate statistics and machine learning methods (Cheng et al 2011;Yang and Cheng 2014;Makvandi et al 2016aMakvandi et al , 2019Gonçalves et al 2018;Ordóñez-Calderón and Gelcich 2018;Grunsky and de Caritat 2019;Huang et al 2019;Gonçalves and Mateus 2019) and in developing discriminant diagrams to separate different styles of mineralization (Dupuis and Beaudoin 2011;Montreuil et al 2013;Makvandi et al 2016b;Fresia et al 2017;Huang et al 2019).…”
Section: Introductionmentioning
confidence: 99%
“…Identifying mineral pathfinders and developing their use for exploration require studying deposits to generate a detailed understanding of what controls the mineral composition and to what extent this reflects the chemical signature of the mineralization they are associated with. In the last decades, many studies have focused on mineral exploration tools based on fertility indicators and chemical vectoring (Kerrich and Wyman 1997;Kelley et al 2006;Jackson 2010;Cooke et al 2014;Wilkinson et al 2015;Champion and Huston 2016;McClenaghan and Layton-Matthews 2017;Soltani Dehnavi et al 2018;Dill 2018;Codeço et al 2018;Uribe-Mogollon and Maher 2018;Luz et al 2019). In that context, there is an increasing interest in using multivariate statistics and machine learning methods (Cheng et al 2011;Yang and Cheng 2014;Makvandi et al 2016aMakvandi et al , 2019Gonçalves et al 2018;Ordóñez-Calderón and Gelcich 2018;Grunsky and de Caritat 2019;Huang et al 2019;Gonçalves and Mateus 2019) and in developing discriminant diagrams to separate different styles of mineralization (Dupuis and Beaudoin 2011;Montreuil et al 2013;Makvandi et al 2016b;Fresia et al 2017;Huang et al 2019).…”
Section: Introductionmentioning
confidence: 99%
“…Together and properly managed, all these endeavours will optimize exploration, generating innovative insights on: (i) conceptual metallogenic modelling through improvements of current knowledge about critical factors ruling the progression of ore-forming processes in different scales of space and time, including geothermochronology (e.g. Wyborn et al, 1994;Holliday and Cook, 2007;Hagemann et al, 2007;Benavides et al, 2008;Tassinari et al, 2008;2015;Piercey, 2010;McCuaig et al, 2010;McCuaig and Hronsky, 2014;Huston et al, 2016;Smith et al, 2016;Groves et al, 2016;Codeço et al, 2018); (ii) distal manifestations of concealed ore systems by means of mineralogical and geochemical/isotopic criteria, which can also be used to discriminate targets with high metal contents and/or larger tonnage (e.g. Craig, 2001;Holk et al, 2003;Piché and Jébrak, 2004;Kelly et al, 2006;Kerrich and Wyman, 2007;Jackson, 2010;Cheng and Zhao, 2011;Dupuis and Beaudoin, 2011;Wang et al, 2012;Wilkinson et al, 2015;Zao et al, 2016;Champion and Huston, 2016;Dill, 2018;Gonçalves et al, 2018); (iii) combined data processing resulting from various geophysical methods and using inversion model techniques (e.g.…”
Section: Figura 1 (A) La Masa Total Elemental Estima (Mi) Como Una Fmentioning
confidence: 99%
“…A abundância relativa das rochas máficas possivelmente aumenta em profundidade, o que diversos trabalhos de geofísica voltados para a exploração mineral não publicados indicam (Codeço et al, 2018). As rochas máficas podem ser tanto alcalinas quanto toleíticas enquanto que as rochas félsicas são cálcio-alcalinas (Mitjavila et al, 1997;Thieblemont et al, 1998;Tornos, 2006).…”
Section: Complexo Vulcano Sedimentarunclassified
“…A Faixa Piritosa Ibérica é subdividida em diferentes regiões de maneiras distintas de acordo com as características das rochas presentes no Complexo VS (Tornos, 2006;Conde, 2016;Martin Izard et al, 2016;Codeço et al, 2018 (Solá et al, 2015;Rosa et al, 2009;Barrie et al, 2002) A compartimentação proposta por Martin Izard et al (2016) é questionada por Tornos (comunicação oral) pois, além do trabalho de mapeamento ser escasso, os depósitos são interpretados de acordo com a posição das rochas na estratigrafia (que por si só é questionável, visto que diversos contatos são tectônicos) e não em relação aos ambientes de formação dos sulfetos. Além do mais, para Conde (2016) (2006) e Conde (2016).…”
Section: Regiões Da Fpiunclassified
See 1 more Smart Citation