The dependence of adenosine-triphosphatase (ATPase) and succinic dehydrogenase (SDH) histochemical reactions on the pH of the preincubation medium was studied in serial cross sections of 1- to 6-month-old rat extensor digitorum longus (EDL) and soleus (SOL) muscles. The use of a wide spectrum of pH values confirmed the previous results showing that: (1) according to their ATPase and SDH reactions 3 types of extrafusal muscle fibres, i.e., fast-twitch glycolytic (FG), fast-twitch oxidative-glycolytic (FOG) and slow-twitch oxidative (SO) and 3 types of intrafusal muscle fibres, i.e. typical and intermediate nuclear bag fibres and nuclear chain fibres were observed; (2) only acid preincubation (pH 4.35) is necessary to demonstrate the reversal of the ATPase reaction; while (3) alkali preincubation (pH 10.4) does not provide any new important information as compared with ATPase without preincubation. Furthermore, it was shown that: (4) fast-twitch muscle fibres exhibited high ATPase activity on preincubations at pH 4.9 to 10.4, slow-twitch fibres had very high ATPase activity on preincubation at pH 4.3 and 4.5; (5) after preincubation at pH 4.5 two types of FOG fibres were observed, differing in their ATPase activity; (6) in both muscles there were fibres with intermediate ATPase activity both after acid and/or alkali preincubations; (7) the intrafusal muscle fibres exhibited some specific characteristics when compared with extrafusal fibres. In contrast to the ATPase reactions, SDH activity was decreased equally, in both extra- and intrafusal fibres, with increasing acidity and alkality of the preincubation medium.