Information on the influence of poor maternal nutrition on the regulation of responses to pregnancy, placental and fetal growth and development is critical to a better understanding of pregnancy physiology and pathophysiology. We determined normal changes and effects of controlled and monitored moderate nutrient restriction (NR) (global nutrient intake reduced to 70% of food consumed by mothers feeding ad libitum from 0.16 to 0.5 of gestation) in the baboon, on important hematological, biochemical, and hormonal indices of fetal growth and placental function. Serum IGF-I:IGFBP-3 ratio was lower in pregnant than control non-pregnant baboons feeding ad libitum. Serum concentrations of total and free IGF-I were decreased in NR mothers compared with controls (p < 0.05). The decrease in fetal IGF-I did not reach significance (p = 0.057). Serum IGF-I: IGFBP-3 ratio was decreased by NR in both mothers and fetuses. Maternal serum IGF-II was unchanged by NR. Placental IGF-I mRNA and protein abundance were similarly reduced whereas IGF-II mRNA increased in placental tissue of NR compared to control mothers. Systemic (maternal) and local (placental) IGFBP-1 and IGFBP-3 mRNA and protein abundance were unchanged by NR. Type 1 IGF receptor protein in the syncytiotrophoblast increased in NR. Type 2 IGF receptor protein was present in the stem villi core, and decreased after NR. We conclude that moderate NR in this important non-human primate model significantly disrupts the maternal and placental IGF-IGFBP axis and influences placental expression of this key system at the gene and protein level. Changes observed appear to be directed toward preserving placental growth.