The geometric accuracy of a hemispherical shell resonator (HSR) affects the assembly accuracy and final performance of a hemispherical resonant gyroscope in many ways. During the precision grinding of a resonator, the tool-setting error and wear error affect the form and positional accuracy of the inner and outer spherical surfaces. In this study, a compensation method for generating grinding of the HSR is proposed to address this problem. The geometric errors of the inner and outer spherical surfaces are systemically analyzed and a geometric model of the tool setting and wheel wear is established for generating grinding of the HSR. According to this model, a mapping relationship between the wheel pose and size, form, and positional error of the HSR was proposed. Experiments regarding machining, on-machine measurements, and error compensation were performed using the mapping relationship. The results demonstrate that the proposed method can reduce the radius error of the inner and outer spherical surfaces from 10 μm to 1 μm, sphericity from 5 μm to 1.5 μm, and concentricity from 15 μm to 3 μm following grinding. The form and positional errors are simultaneously improved, verifying the effectiveness of the proposed method.