The aim of the study was to synthesize 4-Coumarinyl-2-methylbenzoate, elucidate the reaction mechanism, perform quantum chemical calculations, and examine the swiss adme properties of the compound. 4-Coumarinyl-2-methylbenzoate compound was synthesized by nucleophilic substitution reaction. The compound 4-coumarinyl 2-methyl benzoate has been characterized both experimentally and theoretically using quantum chemical calculations and spectral techniques. Nuclear magnetic resonances and infrared spectroscopic values of 1H and 13C in the ground state of the compound were calculated both experimentally and theoretically (density functional theory method was used when making theoretical calculations). It was observed that the calculated infrared and nuclear magnetic resonance values were compatible with the experimental values. The energy difference between the HOMO-LUMO of the 4-Coumarinyl-2-methylbenzoate compound was calculated and it was found that this difference was 1.409 Ev.
Finally, swiss adme properties of 4-Coumarinyl-2-methylbenzoate compound such as Molecular Mass (Size), Flexibility (FLEX), Polarity, Saturation (Insatu), Lipophilia, Water Solubility were examined.