The aim of this study was to evaluate, in vitro, quantitatively and qualitatively, the stability of an experimental hybrid with two different concentrations (concentrated and diluted) applied at a simulation of a sensitive dentin. Human molar teeth were selected and their crowns were sectioned below the occlusal groove in order to obtain specimens of dentine disks that were ground flat and polished to achieve a thickness of 1.0 millimeter. The specimens were divided into 4 groups (n = 9) in accordance with proposed surface treatments: Artificial saliva (SAL) dentinal selfetching adhesive (AD), concentrated experimental hybrid (TC) and experimental hybrid diluted in the ratio 1: 3 (TD). Two methods were used to assess the stability: hydraulic conductance (dentin permeability) and scanning electron microscopy. The dentin permeability in 6 experimental times was carried out: Minimum (no treatment), Maximum (with open tubules), treatment (after application of their treatments), erosion (after 5 minutes of immersion in citric acid 0.05M pH 3, 8), brushing (brushing after 3900 cycles) and Post erosion (erosion was repeated after brushing). The scanning electron microscopy was performed on dentin specimens with a central area of application of treatments and natural tissues on the sides to show the film characteristics applied. Readings were made after application of treatments, after erosion, after brushing and after erosion after brushing, for all 4 treatments proposed. The analysis of variance (ANOVA) for repeated measures with two variation factors was applied with the multiple comparisons paired test (Tukey). For dentin all treatments reduced hydraulic conductance (Lp) in relation to Maximum. TC and TD showed the lowest values (24% and 15%) respectively. The TD continued to show statistically similar values after erosion (36%), being statistically similar to TC (55%). In brushing time the TD Lp was statistically similar to Treatment and erosion times. All groups were statistically similar between treatments in brushing and Post Erosion times. The analysis of SEM shows dentinal tubules with content inside on the TC and TD groups, remaining during all experimental period. AD presented a clear film, which began to stand out and show failure from erosion time. It follows that the TD had better behavior being able to decrease permeability of dentin by forming a thin film transparent, imperceptible, capable of sealing (fully or partially) and penetrate within the dentine tubules, resisting the erosive and abrasive challenges.