Polyethylene glycol (PEG)-diacyl lipid micelles have been prepared by loading with the hydrophobic meso-5,10,15,20-tetraphenyl-21H,23H-porphine (TPP) and used for the photodynamic treatment of B-16 melanoma cells in vitro and in vivo. The use of PEG-PE micelles allowed for a 150-fold increased the solubilization of TPP, compared with the native drug. The average size of the PEG-PE micelles was in the range of 10 -12 nm with a narrow size distribution. At 50 mg/ml of TPP in micelles with an irradiation intensity of 4.5 -21.5 mW/cm 2 , the viability of B-16 melanoma cells in vitro decreased in a fluencedependent manner. A highly effective outcome of photodynamic therapy (PDT) with TPP-loaded PEG-PE micelles can be further increased by modifying such micelles with cancer-specific monoclonal antibody 2C5 to TPP-loaded micelles to tumor cells. TPP-containing 2C5-modified micelles provided the strongest phototoxic effect against B-16 cells in vitro compared with TPP-loaded plain micelles at the same TPP concentration. The association of TPP-loaded immuno-targeted micelles with melanoma cells was also studied by flow cytometry. An increase in cell association was found for 2C5-targeted micelles compared with non-targeted micelles. In vivo, the PDT treatment of subcutaneous melanoma-bearing C57BL/6 mice with 100 mW/cm 2 of 630 nm laser light 9 h after the administration of the micellar TPP (1 mg/kg of TPP) resulted in a significant inhibition of tumor growth. Compared with controls, the weight of postmortem tumors was approx. 3.5-and 7.5-fold smaller with TPP-loaded PEG-PE micelles and TPP-loaded PEG-PE 2C5-immunomicelles, respectively.