Surface cracks and joint deteriorations are typical premature failures of urban cement concrete pavement. However, traffic loads on the urban pavement are much lower than those on highways. Limited research has been conducted to investigate the causes of accelerated damage in urban cement concrete roads. To investigate the foundation issues that may cause the accelerated damage of urban cement concrete pavements, in this study, field evaluations were conducted to assess pavement foundation support and drainage conditions. Field visual inspections, Ground Penetrating Radar (GPR) survey, Dynamic Cone Penetrometer (DCP) test, and the Core-Hole Permeameter (CHP) test were performed. In urban residential areas with inadequate subgrade bearing capacity, cement concrete pavements are prone to early damage. Foundations with a higher content of coarse particles exhibit a higher CBR value, which can extend the service life of the pavement. The compaction of foundation materials near sewer pipelines and manholes is insufficient, leading to non-uniform support conditions. Moreover, the permeability of the foundation material can influence the service life of pavement surface structures. Foundation materials with fewer fine particles enhance drainage performance, contributing to a longer service life for PCC pavements. In areas with inadequate drainage, water accumulation reduces the bearing capacity of the foundation, thereby accelerating pavement deterioration. The poor bearing capacity and drainage conditions of the foundation lead to cavities between the surface layer and foundation material thus yielding stress concentrations on the pavement surface, which cause the formation of pavement surface cracks.