Purpose: The treatment of childhood myopia often involves the use of topical atropine, which has been demonstrated to be effective in decelerating the progression of myopia. It is crucial to monitor intraocular pressure (IOP) to ensure the safety of topical atropine. This study aims to identify the optimal machine learning IOP-monitoring module and establish a precise baseline IOP as a clinical safety reference for atropine medication. Methods: Data from 1545 eyes of 1171 children receiving atropine for myopia were retrospectively analyzed. Nineteen variables including patient demographics, medical history, refractive error, and IOP measurements were considered. The data were analyzed using a multivariate adaptive regression spline (MARS) model to analyze the impact of different factors on the End IOP. Results: The MARS model identified age, baseline IOP, End Spherical, duration of previous atropine treatment, and duration of current atropine treatment as the five most significant factors influencing the End IOP. The outcomes revealed that the baseline IOP had the most significant effect on final IOP, exhibiting a notable knot at 14 mmHg. When the baseline IOP was equal to or exceeded 14 mmHg, there was a positive correlation between atropine use and End IOP, suggesting that atropine may increase the End IOP in children with a baseline IOP greater than 14 mmHg. Conclusions: MARS model demonstrates a better ability to capture nonlinearity than classic multiple linear regression for predicting End IOP. It is crucial to acknowledge that administrating atropine may elevate intraocular pressure when the baseline IOP exceeds 14 mmHg. These findings offer valuable insights into factors affecting IOP in children undergoing atropine treatment for myopia, enabling clinicians to make informed decisions regarding treatment options.