2019
DOI: 10.14529/mmp190408
|View full text |Cite
|
Sign up to set email alerts
|

Diagnostics of Instant Decomposition of Solution in the Nonlinear Equation of Theory of Waves in Semiconductors

Abstract: В работе рассматривается метод численной диагностики разрушения решения в нелинейном уравнении теории волн в полупроводниках. Особенность рассматриваемой задачи заключается в том, что на положительной полупрямой отсутствует даже локальное во времени слабое решение задачи, в то время как на отрезке от 0 до L существует локальное во времени классическое решение. Нашей задачей являлось численно показать, что при L, стремящемся к бесконечности, время существования решения стремится к нулю. Численная диагностика ра… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
2
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 9 publications
0
2
0
Order By: Relevance
“…The study of the blow-up phenomena for many initial-boundary value problems that arise in particular in the theory of ion sound waves in plasma [1], waves in semiconductors [2] and electric oscillations [3] was detailed in many studies with the aim to obtain global or local unsolvability results by using the method of test functions.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…The study of the blow-up phenomena for many initial-boundary value problems that arise in particular in the theory of ion sound waves in plasma [1], waves in semiconductors [2] and electric oscillations [3] was detailed in many studies with the aim to obtain global or local unsolvability results by using the method of test functions.…”
Section: Introductionmentioning
confidence: 99%
“…Let u 0 and u 1 be two functions defined on 3 such that ∈ then the instantaneous blow-up occurs for any solution to (1)-(2). then the time period existence T max for any local solution to (1)-(2) Let u v u , , 0 0 1 and v 1 be defined on 3 such that ∈…”
mentioning
confidence: 99%