В работе рассматривается метод численной диагностики разрушения решения в нелинейном уравнении теории волн в полупроводниках. Особенность рассматриваемой задачи заключается в том, что на положительной полупрямой отсутствует даже локальное во времени слабое решение задачи, в то время как на отрезке от 0 до L существует локальное во времени классическое решение. Нашей задачей являлось численно показать, что при L, стремящемся к бесконечности, время существования решения стремится к нулю. Численная диагностика разрушения решения основана на методике вычисления апостериорной асимптотически точной оценки погрешности полученного численного решения по методике Ричардсона.Ключевые слова: численная диагностика мгновенного разрушения решения.
We consider the Cauchy problem for a model partial differential equation of third order with non-linearity of the form
, where
for
and
. We construct a fundamental solution for the linear part of the equation and use it to obtain analogues of Green’s third formula for elliptic operators, first in a bounded domain and then in unbounded domains. We derive an integral equation for classical solutions of the Cauchy problem. A separate study of this equation yields that it has a unique inextensible-in-time solution in weighted spaces of bounded and continuous functions. We prove that every solution of the integral equation is a local-in-time weak solution of the Cauchy problem provided that
. When
, we use Pokhozhaev’s non-linear capacity method to show that the Cauchy problem has no local-in-time weak solutions for a large class of initial functions. When
, this method enables us to prove that the Cauchy problem has no global-in-time weak solutions for a large class of initial functions.
In this paper, we consider the Cauchy problem for one nonclassical, third-order, partial differential equation with gradient nonlinearity |∇u(x, t)| q . The solution to this problem is understood in a weak sense. We show that for 1 < q ⩽ 3∕2, there are no local-in-time weak solutions of this problem with initial data u 0 (x) from the class U, whereas for q > 3∕2, such a solution exists. For 3∕2 < q ⩽ 2, the Cauchy problem proved not to have global-in-time weak solutions. For 3∕2 < q ⩽ 2, we show finite-time blow-up of unique local-in-time weak solution of the Cauchy problem without dependence from the initial functions from the class U. As a technique, we obtain Schauder-type estimates for potentials. We use them to investigate smoothness of the weak solution to the Cauchy problem for q = 2 and q ⩾ 4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.