Food and nutrition studies in animals and human beings often meet with technical difficulties and sometimes with ethical questions. An alternative to research in living animals is the dynamic multicompartmental in vitro model for the gastrointestinal tract described by Minekus el al. (1995) and . The dynamic conditions that are simulated in this model are peristaltic movements, transit times, pH responses, secretion of enzymes and electrolytes and absorption of nutrients and water. To obtain data for an in vitro model of the dog gastrointestinal tract, the literature was surveyed for physiological responses to different types of dog food. These included: values of enzyme activities, electrolyte concentrations, gastric emptying and intestinal transit times, pH values, secretion and composition of bile and absorption rates in different parts of the dog gastrointestinal tract. The review focuses on research carried out on healthy, adult dogs of 10-20 kg and on parameters related to the oral cavity, stomach and small intestine. This literature research gives sufficient data on the physiology of the canine digestive tract for the development of an in vitro dynamic model that adequately simulates the functions of the stomach and small intestine of the dog.