“…Liu 等 [52] 利用光刻及等离子腐蚀技术, 首先制 [53] 采取滴落涂布法 将酞菁铜微晶修饰到氢终止和氧终止的 BDD 薄膜 表面,通过电化学测试分析发现酞菁铜微晶修饰氢 终止 BDD 对 ORR 的催化活性优于氧终止 BDD, 不 过催化的 ORR 主要是以 2 电子形式进行。 Koh 等 [54] 以 5 nm 的 ND 为基础材料, 利用真空热处理技术使 其表面碳化 , 形成石墨烯层 , 然后 , 使用改进的 Hummer 法腐蚀石墨烯层使其破裂, 并与三聚氰胺 混 合 热 处 理 , 对 破 裂 的 石 墨 烯 层 实 现 掺 氮 (N-exhND)。N-exhND 比 Pt/C 催化 ORR 的半坡电 位仅差 51 mV, 同时 N-exhND 具有明显的抗甲醇能 力。通过 5000 圈 ADT 以后, N-exhND 催化 ORR 的 半坡电位只左移 31 mV, 而 Pt/C 却左移 133 mV, N-exhND 的稳定性优势明显。 Dong 等 [55] 利用浓 H 2 SO 4 和浓 HNO 3 对石墨化 ND 表面的石墨烯层进行腐蚀处理, 使石墨结构中 出现更多缺陷, 然后引入三聚氰胺进行热处理, 最 终得到氮掺杂的石墨化 ND(N-C/ND)。ADT 结果证 明 N-C/ND 的高稳定性十分优异, ND 为核芯应该是 保证催化剂稳定性的关键因素。在 ND 的石墨化过 程中可以尝试掺杂 N、B,只是 ND 的石墨化温度 较高(高于 1200℃), B-C、C-N 键在高温环境下不稳 定(1000℃)。Liu 等 [56] 采用 FeCl 3 为催化剂, 降低了 ND 的石墨化温度, 并在其石墨化过程引入 B、 N 源, 实现 B、N 共掺杂, 即一步法对石墨化 ND 完成了 掺杂。 B、 N 双掺杂石墨化 ND 在碱性环境中对 ORR 催化活性较高, 且稳定性出色。Wu 等 [57] 则制备了…”