Deposition of diamond films on Si substrates precoated with a series of ceramic intermediate layers was examined. The interlayers containing SiC, SiNx, SiCN, TiSiN, and TiAlSiN were prepared by a liquid injection plasma‐enhanced chemical vapor deposition (PECVD) method using alkoxide solution precursors. The subsequent diamond synthesis on these coatings was carried out by microwave plasma‐assisted CVD (MPCVD) using a H2–1%CH4 mixture. A higher nucleation density of diamond was obtained on these intermediate layers than on the as‐polished Si wafer, along with a nonuniform surface distribution of diamond. Diamond powder scratching pretreatment of these interlayers enhanced the nucleation density and promoted the formation of fully uniform diamond films. Particularly, nanocrystalline diamond films were directly generated on TiSiN and TiAlSiN layers under an identical deposition condition that had favored the formation of microcrystalline diamond films on Si wafers and the Si(C,N) interlayers. The mechanism for this difference is attributed primarily to a higher amount of residual amorphous carbon in TiSiN and TiAlSiN layers than that inside Si(C,N) layers.