The wear of ultrahigh-molecular weight polyethylene (UHMWPE) tibial inserts in total knee arthroplasty (TKA) remains a major limitation that hinders the longevity of clinically successful devices. Surface properties significantly affect the overall performance of TKA, and surface modification with mechanically and chemically stable materials is an effective method for overcoming the wear of TKA. However, wear tests are not cost-efficient or time-efficient; thus, the effects of geometric, loading, and alignment perturbations are often evaluated via parametric studies. Computational wear prediction using a finite element (FE) model followed by validation through comparison with experimental data is effective for assessing new prosthetic designs or surface change methods prior to functional testing and surgical implementation. The aim of this study was to evaluate the weight loss, wear depth, and kinematics for different surface properties, including nanostructured diamond (NSD), diamond-like carbon (DLC), titanium-nitride (TiN), and oxidized zirconium (OxZr) on femoral components in TKA using FE analysis under gait-cycle loading conditions. Weight loss and wear depth were lowest with OxZr followed by TiN, NSD, and DLC. However, the DLC femoral component did not show any improvement in wear rate compared to an uncoated cobalt-chromium (Co-Cr) femoral component. Not all surface changes applied in this study did lead to improvement in wear performance. However, this study demonstrates the potential of OxZr and TiN for reducing UHMWPE wear and offers new insights into the effects of wear on TKA.