2012
DOI: 10.3762/bjnano.3.100
|View full text |Cite
|
Sign up to set email alerts
|

Diamond nanophotonics

Abstract: SummaryWe demonstrate the coupling of single color centers in diamond to plasmonic and dielectric photonic structures to realize novel nanophotonic devices. Nanometer spatial control in the creation of single color centers in diamond is achieved by implantation of nitrogen atoms through high-aspect-ratio channels in a mica mask. Enhanced broadband single-photon emission is demonstrated by coupling nitrogen–vacancy centers to plasmonic resonators, such as metallic nanoantennas. Improved photon-collection effici… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
30
0
2

Year Published

2015
2015
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 40 publications
(32 citation statements)
references
References 25 publications
0
30
0
2
Order By: Relevance
“…However, due to its structural properties the LDME exclusively predicts polarization decays of exponential kind, corresponding to Lorentzian profiles for the susceptibility. Precisely such features are violated in a plethora of experimental findings ranging from electron/nuclear spins [16][17][18][19][20] or nitrogen-vacancy (NV) centers [21,22] to chromophoric molecules [23,24] which display a biexponential decay of the polarizations leading to two T 2 times, a short and a long one. This decay process was clearly associated to homogeneous non-Lorentzian susceptibility profiles in quantum dots (QDs) [25][26][27][28][29][30][31] and NV centers [32,33].…”
mentioning
confidence: 99%
See 1 more Smart Citation
“…However, due to its structural properties the LDME exclusively predicts polarization decays of exponential kind, corresponding to Lorentzian profiles for the susceptibility. Precisely such features are violated in a plethora of experimental findings ranging from electron/nuclear spins [16][17][18][19][20] or nitrogen-vacancy (NV) centers [21,22] to chromophoric molecules [23,24] which display a biexponential decay of the polarizations leading to two T 2 times, a short and a long one. This decay process was clearly associated to homogeneous non-Lorentzian susceptibility profiles in quantum dots (QDs) [25][26][27][28][29][30][31] and NV centers [32,33].…”
mentioning
confidence: 99%
“…Moreover, the crossover from an oscillatory towards a biexponential damping has been observed for the spin dynamics in a 2D electron gas [86]. More generally, a biexponential decay was found in spins [16,[18][19][20], NV centers [21,22], light-harvesting complexes [23,24] or in QDs [17,[25][26][27][28][29][30][31]82]. To understand which physical mechanisms produce these unorthodox decays, one should investigate each setup thoroughly.…”
mentioning
confidence: 99%
“…Узкая линия 699. 4 .2) nm. Эти ли-нии могут быть обусловлены одиночными центрами SiV в областях с различными внутренними напряжениями в наноалмазах [11,13].…”
Section: экспериментальные результаты и их обсуждениеunclassified
“…В последние годы большое внимание уделяется со-зданию и исследованию центров окраски в алмазе, излучающих в видимой и ближней ИК области спек-тра [1][2][3][4][5][6][7]. Благодаря таким свойствам алмаза как ши-рокая запрещeнная зона, высочайшая теплопроводность и твeрдость, химическая инертность, высокая темпе-ратура Дебая, радиационная стойкость этот материал является исключительно удачной матрицей для цен-тров окраски [8].…”
Section: Introductionunclassified
“…In this review, we focus on the nanostructure types suitable for scanning probe sensing. For more complete recent reviews of diamond nanophotonics in the context of quantum information, see [94][95][96][97]. In essence, photonic nanostructures suitable for scanning probe sensing consist of a roughly tip-shaped nanophotonic structure on a thin (typically <1 µm) diamond mounting structure, as shown in Figure 6a.…”
Section: Nanostructures For Photonics and Scanning Probe Operationmentioning
confidence: 99%