An alternative concept for the selective catalytic formation of 1-octene from ethylene via dimeric catalytic centers is proposed. The selectivity of the tetramerization systems depends on the capability of ligands to form binuclear complexes that subsequently build up and couple two separate metallacyclopentanes to form 1-octene selectively. Comparison of existing catalytic processes, the ability of the bis(diarylphosphino)amine (PNP) ligand to bridge two metal centers, and the experimental background support the proposed binuclear mechanism for ethylene tetramerization.