The previously unknown methallylnickel 2-diorganophosphanylphenolates (R=Ph, cHex) were synthesized and found to catalyze the polymerization of ethylene. To explore the potential for ligand-tuning, a variety of P-alkyl- and P-phenyl-2-phosphanylphenols was synthesized and allowed to react with [Ni(cod)(2)] (cod=1,5-cyclooctadiene) or with NiBr(2).DME and NaH. The complexes formed in situ with [Ni(cod)(2)] are generally active as ethylene polymerization catalysts with all the ligands tested, whereas the latter systems are inactive when 2-dialkylphosphanylphenols are applied. M(w) values, ranging from about 1000 to about 100000 g mol(-1), increase for various R(2)P groups in the order R=Ph
In this paper a novel ligand of the type [PNPNH] is presented for the application in a new homogeneous highly selective ethene trimerization system for the formation of 1‐hexene, which consists of the chromium source CrCl3(thf)3, the ligand Ph2PN(iPr)P(Ph)N(iPr)H (1), and Et3Al as an activator in toluene. The excellent characteristics of this new system, e.g. very high selectivity to C6 with highest purity of the C6 fraction (>99 % 1‐hexene), activity on a constant level on a long timescale, use of small amounts of Et3Al as a cheap activator, and only very low production of PE, make it to a hot candidate for industrial application. Its organometallic background gives an indication of the nature of the active catalyst species.
An alternative concept for the selective catalytic formation of 1-octene from ethylene via dimeric catalytic centers is proposed. The selectivity of the tetramerization systems depends on the capability of ligands to form binuclear complexes that subsequently build up and couple two separate metallacyclopentanes to form 1-octene selectively. Comparison of existing catalytic processes, the ability of the bis(diarylphosphino)amine (PNP) ligand to bridge two metal centers, and the experimental background support the proposed binuclear mechanism for ethylene tetramerization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.