Let
$ T:[0,1]\to [0,1] $
be an expanding Markov map with a finite partition. Let
$ \mu _\phi $
be the invariant Gibbs measure associated with a Hölder continuous potential
$ \phi $
. For
$ x\in [0,1] $
and
$ \kappa>0 $
, we investigate the size of the uniform approximation set
$$ \begin{align*}\mathcal U^\kappa(x):=\{y\in[0,1]:\text{ for all } N\gg1, \text{ there exists } n\le N, \text{ such that }|T^nx-y|<N^{-\kappa}\}.\end{align*} $$
The critical value of
$ \kappa $
such that
$ \operatorname {\mathrm {\dim _H}}\mathcal U^\kappa (x)=1 $
for
$ \mu _\phi $
-almost every (a.e.)
$ x $
is proven to be
$ 1/\alpha _{\max } $
, where
$ \alpha _{\max }=-\int \phi \,d\mu _{\max }/\int \log |T'|\,d\mu _{\max } $
and
$ \mu _{\max } $
is the Gibbs measure associated with the potential
$ -\log |T'| $
. Moreover, when
$ \kappa>1/\alpha _{\max } $
, we show that for
$ \mu _\phi $
-a.e.
$ x $
, the Hausdorff dimension of
$ \mathcal U^\kappa (x) $
agrees with the multifractal spectrum of
$ \mu _\phi $
.