Tendinopathy is a common painful musculoskeletal disorder treated by injection of
analgesics and nonsteroidal anti-inflammatory drugs (NSAIDs), which are believed to have
cytotoxicity toward tenocytes. Ascorbic acid is an antioxidant that promotes collagen
biosynthesis and prevents free radical formation. It is believed to protect tenocytes from
oxidative stress. The optimal concentration of ascorbic acid, especially when used in
conjunction with anesthetics and NSAIDs injection, to treat different stages of
tendinopathies is unknown. Human tenocytes were isolated from a torn edge of the
supraspinatus tendon of a 51-year-old male patient during arthroscopic repair. We
monitored real-time changes in human tenocyte proliferation upon exposure to different
concentrations of ascorbic acid, bupivacaine, and ketorolac tromethamine using the
xCELLigence system. No significant changes in cell index were observed between the control
group and tenocytes treated with the 3 concentrations of ascorbic acid. Tenocytes exposed
to 0.5% bupivacaine and 30 or 15 mg/mL ketorolac tromethamine revealed significant
reduction in tenocytes proliferation. Bupivacaine 0.5% with 250 μg/mL ascorbic acid and 15
mg/mL ketorolac tromethamine with 250 μg/mL ascorbic acid showed the least cytotoxicity
against tenocytes. The optimal ascorbic acid concentration required to reduce the
cytotoxic effects of bupivacaine and ketorolac tromethamine was demonstrated using this
platform.