Osmotic shock and growth-medium stimulation of Dictyostelium cells results in rapid cell rounding, a reduction in cell volume, and a rearrangement of the cytoskeleton that leads to resistance to osmotic shock. Osmotic shock induces the activation of guanylyl cyclase, a rise in cGMP mediating the phosphorylation of myosin II, and the tyrosine phosphorylation of actin and the ϳ130-kDa protein (p130). We present data suggesting that signaling pathways leading to these different responses are, at least in part, independent. We show that a variety of stresses induce the Ser/Thr phosphorylation of the protein-tyrosine phosphatase-3 (PTP3). This modification does not alter PTP3 catalytic activity but correlates with its translocation from the cytosol to subcellular structures that co-localize to endosomal vesicles. This translocation is independent of PTP3 activity. Mutation of the catalytically essential Cys to a Ser results in inactive PTP3 that forms a stable complex with tyrosine-phosphorylated p130 (pp130) in vivo and in vitro, suggesting that PTP3 has a substrate specificity for pp130. The data suggest that stresses activate several interacting signaling pathways controlled by Ser/Thr and Tyr phosphorylation, which, along with the activation of guanylyl cyclase, mediate the ability of this organism to respond to adverse changes in the external environment.