Endolysosomes can be damaged by diverse materials. Terminally damaged compartments are degraded by lysophagy, but pathways that repair salvageable organelles are poorly understood. Here we found that the Endosomal Sorting Complex Required for Transport (ESCRT) machinery, known to mediate budding and fission on endolysosomes, also plays an essential role in their repair. ESCRTs were rapidly recruited to acutely injured endolysosomes via a pathway requiring calcium and ESCRT-activating factors that was independent of lysophagy. We used live cell imaging to demonstrate that ESCRTs responded to small perforations in endolysosomal membranes and enabled compartments to recover from limited damage. Silica crystals that disrupted endolysosomes also triggered ESCRT recruitment. ESCRTs thus provide a defense against endolysosomal damage likely to be relevant in physiological and pathological contexts.
The Endosomal Sorting Complexes Required for Transport (ESCRT) proteins mediate fundamental membrane remodeling events that require stabilizing negative membrane curvature. These include endosomal intralumenal vesicle formation, HIV budding, nuclear envelope closure and cytokinetic abscission. ESCRT-III subunits perform key roles in these processes by changing conformation and polymerizing into membrane-remodeling filaments. Here, we report the 4 Å resolution cryo-EM reconstruction of a one-start, double-stranded helical copolymer composed of two different human ESCRT-III subunits, CHMP1B and IST1. The inner strand comprises “open” CHMP1B subunits that interlock in an elaborate domain-swapped architecture, and is encircled by an outer strand of “closed” IST1 subunits. Unlike other ESCRT-III proteins, CHMP1B and IST1 polymers form external coats on positively-curved membranes in vitro and in vivo. Our analysis suggests how common ESCRT-III filament architectures could stabilize different degrees and directions of membrane curvature.
Early-onset torsion dystonia, a CNS-based movement disorder, is usually associated with a single amino acid deletion (⌬E302͞303) in the protein torsinA. TorsinA is an AAA؉ ATPase in the endoplasmic reticulum, but what it does is unknown. Here, we use torsinA mutants with defects in ATP hydrolysis (E171Q, ATP-bound) and ATP binding (K108A, ATP-free) to probe torsinA's normal cellular function. Surprisingly, ATP-bound torsinA is recruited to the nuclear envelope (NE) of transfected cells, where it alters connections between inner and outer nuclear membranes. In contrast, ATP-free torsinA is diffusely distributed throughout the endoplasmic reticulum and has no effect on the NE. Among AAA؉ ATPases, affinity for substrates is high in the ATP-bound and low in the ATP-free state, leading us to propose that component(s) of the NE may be substrates for torsinA. We also find that the disease-promoting ⌬E302͞303 mutant is in the NE, and that this relocalization, as well as the mutant's previously described ability to induce membranous inclusions, is eliminated by the K108A ATP-binding mutation. These results suggest that changes in interactions involving torsinA in the NE could be important for the pathogenesis of dystonia and point to torsinA and related proteins as a class of ATPases that may operate in the NE.
SKD1/VPS4B is an AAA؉ (ATPase associated with a variety of cellular activities) protein involved in multivesicular body (MVB) biogenesis. In this study, we show that the impairment in MVB biogenesis caused by the ATP hydrolysis-deficient mutant SKD1(E235Q) is accompanied by assembly of a large detergent-insoluble protein complex that includes normally soluble endogenous components of mammalian endosomal sorting complex required for transport (ESCRT) I and ESCRT-III complexes. Membrane-bound ESCRT-III complex has been proposed to be the substrate that recruits SKD1 to nascent MVBs. To explore this relationship, we studied interactions among the human ESCRT-III components hSnf7-1 and hVps24, membranes, and SKD1. We found that a significant portion of overexpressed hSnf7-1 associated with membranes where it formed a large protein complex that recruited SKD1 and perturbed normal MVB biogenesis. Overexpressed hVps24 also associated with membranes and perturbed endosome structure but only when fused to green fluorescent protein. Domain analysis revealed that the basic N-terminal half of hSnf7-1 localized to membranes and formed detergentresistant polymers, some of which looked like filopodia extending into the lumen of swollen endosomes or out from the plasma membrane. The C-terminal acidic half of hSnf7-1 did not associate with membranes and was required for interaction of hSnf7-1 with SKD1. Together with earlier studies, our work suggests that a variety of ESCRT-III-containing polymers can assemble on membranes and recruit SKD1 during formation of the MVB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.