The synthesis and characterization of the first divalent germanium, tin, and lead monoamide derivatives of the parent amide group -NH(2) are presented. They have the general formula (ArMNH(2))(2) (M = Ge, Ar = Ar'(C(6)H(3)-2,6-Pr(i)(2)) or Ar* (C(6)H(3)-2,6(C(6)H(2)-2,4,6-Pr(i)(3))); M = Sn, Ar = Ar*; M = Pb, Ar = Ar*). For germanium and tin, they were obtained by reacting the corresponding terphenyl halides of the group 14 elements with liquid ammonia in diethyl ether. The lead amide derivative (Ar*PbNH(2))(2) was synthesized by reaction of LiNH(2) with Ar*PbBr in diethyl ether. The compounds were characterized by IR and multinuclear NMR spectroscopies and by X-ray crystallography in the case of the (Ar'GeNH(2))(2) or (Ar*SnNH(2))(2) derivatives. They possess dimeric structures with two -NH(2) groups bridging the germanium and tin centers. For lead, the reaction with ammonia led to isolation of a stable ammine complex of formula Ar*PbBr(NH(3)) which was characterized by IR and NMR spectroscopies and by X-ray crystallography. It is the first structural characterization of a divalent lead ammine complex.