1982
DOI: 10.1002/zaac.19824850110
|View full text |Cite
|
Sign up to set email alerts
|

Die K4[Ag4O4] — Strukturfamilie

Abstract: Die Verbindungen M4[Ag4O4] mit M  LiCs und M4[Cu4O4] mit M  LiRb wurden erneut dargestellt; die Kristallstruktur wurde am K4[Ag4O4] überprüft. Entgegen unserem ersten Befund [2, 3] (I4) liegt in I4m2 zwar die Gruppe [Ag4O4]4− vor, doch sind je zwei O2− (trans‐Stellung) etwas (0,02 Å) oberhalb bzw. unterhalb der “Ringebene” ausgelenkt. Bezüglich der neuen Parameter siehe Text. Die Abstände, z. B. d(Ag+→O2−) = 2,058 Å, sowie der Madelung‐Anteil der Gitterenergie, MAPLE, stimmen mit Messungen bzw. Berechnunge… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
9
0

Year Published

1987
1987
2023
2023

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 42 publications
(9 citation statements)
references
References 22 publications
0
9
0
Order By: Relevance
“…However, the oxidation or reduction of copper ions from Cu 2+ to Cu 3+ and Cu + appears to be possible during melting and annealing processes. Cu 2+ ions occupy octahedral positions, whereas Cu + and Cu 3+ ions are expected to occupy tetrahedral positions in the glass network [28][29][30].…”
Section: Discussionmentioning
confidence: 99%
“…However, the oxidation or reduction of copper ions from Cu 2+ to Cu 3+ and Cu + appears to be possible during melting and annealing processes. Cu 2+ ions occupy octahedral positions, whereas Cu + and Cu 3+ ions are expected to occupy tetrahedral positions in the glass network [28][29][30].…”
Section: Discussionmentioning
confidence: 99%
“…[14] 15 NaN 3 5 NaNO 2 8 ZnO 32 Na 10 Zn 4 O 9 25 N 2 500/50 Na 4 SiO 4 [15] 3 NaN 3 NaNO 2 SiO 2 3Na 4 SiO 4 5 N 2 500/50 Na 4 TiO 4 [16] 3 NaN 3 NaNO 2 TiO 2 3Na 4 TiO 4 5 N 2 450/50 NaTiO 2 [17] NaN 3 TiO 2 3NaTiO 2 3/2 N 2 900/18 Na 5 InO 4 [18] 15 NaN 3 5 NaNO 2 2 In 2 O 3 34 Na 5 InO 4 25 N 2 475/50 NaCuO [19] 2 NaN 3 2 CuO 32 NaCuO 3 N 2 550/80 NaCu 2 O 2 [20] 2 NaN 3 4 CuO 32 NaCu 2 O 2 3 N 2 625/50 Na 4 CoO 4 [21] 8 NaN 3 4 NaNO 2 Co 3 O 4 33 Na 4 CoO 4 14 N 2 550/20 Na 3 NO 3 [10] 4 NaN 3 2 NaNO 3 32 Na 3 NO 3 6 N 2 400/24 K 3 NO 3 [11] 4 KN 3 2 KNO 3 32 K 3 NO 3 6 N 2 420/24 KCuO [22] KNO 2 3 KN 3 2 Cu 2 O 34 KCuO 5 N 2 460/48 NaNiO 2 [23] NaN 3 NaNO 2 2 NiO 32 NaNiO 2 2 N 2 650/10 [b] CsCuO [24] 2 CsN 3 2 CuO 32 CsCuO 3/2 N 2 400/24 Cs 2 ZnO 2 [25] 5 CsN 3 CsNO 3 3 ZnO 33 Cs 2 ZnO 2 8 N 2 410/24 Cs 2 NiO 2 [5] 5 CsN 3 CsNO 3 3 NiO 33 Cs 2 NiO 2 8 N 2 420/50 Rb 2 NiO 2 [5] 5 RbN 3 RbNO 3 3 NiO 33 Rb 2 NiO 2 8 N 2 420/48 RbCuO [26] 2 RbN 3 2 CuO 32 RbCuO 3/2 N 2 450/50 Li 2 NiO 2 [27] 5 LiN 3 LiNO 3 3 NiO 33 Li 2 NiO 2 8 N 2 450/50 LiCuO [22] 2 LiN 3 2 CuO 32 LiCuO 3/2 N 2 450/50 LiTiO 2 [28] LiN 3 TiO 2 3LiTiO 2 3/2 N 2 820/5 [b] LiTi 2 O 4 [29] LiN 3 2 TiO 2 3LiTi 2 O 4 3/2 N 2 820/5 [b] [a] Sample was quenched. [14] 15 NaN 3 5 NaNO 2 8 ZnO 32 Na 10 Zn 4 O 9 25 N 2 500/50 Na 4 SiO 4 [15] 3 NaN 3 NaNO 2 SiO 2 3Na 4 SiO 4 5 N 2 500/50 Na 4 TiO 4 [16] 3 NaN 3 NaNO 2 TiO 2 3Na 4 TiO 4 5 N 2 450/50 NaTiO 2 [17] NaN 3 TiO 2 3NaTiO 2 3/2 N 2 900/18 Na 5 InO 4 [18] 15 NaN 3 5 NaNO 2 2 In 2 O 3 34 Na 5 InO 4 25 N 2 475/50 NaCuO [19] 2 NaN 3 2 CuO 32 NaCuO 3 N 2 550/80 NaCu 2 O 2 [20] 2 NaN 3 4 CuO 32 NaCu 2 O 2 3 N 2 625/50 Na 4 CoO 4 [21] 8 NaN 3 4 NaNO 2 Co 3 O 4 33 Na 4 CoO 4 14 N 2 550/20 Na 3 NO 3 [10] 4 NaN 3 2 NaNO 3 32 Na 3 NO 3 6 N 2 400/24 K 3 NO 3 [11] 4...…”
Section: Dedicated To Professor Edgar Niecke On the Occasion Of His 6mentioning
confidence: 99%
“…In conclusion, the new synthesis route for the preparation of ternary alkali metal oxometalates presented herein combines several favorable aspects: general applicability for different chemical systems, the starting materials are easy to handle, and, finally, the alkali metal oxide is generated in situ in a highly reactive form. [ [14] 15 NaN 3 5 NaNO 2 8 ZnO 32 Na 10 Zn 4 O 9 25 N 2 500/50 Na 4 SiO 4 [15] 3 NaN 3 NaNO 2 SiO 2 3Na 4 SiO 4 5 N 2 500/50 Na 4 TiO 4 [16] 3 NaN 3 NaNO 2 TiO 2 3Na 4 TiO 4 5 N 2 450/50 NaTiO 2 [17] NaN 3 TiO 2 3NaTiO 2 3/2 N 2 900/18 Na 5 InO 4 [18] 15 NaN 3 5 NaNO 2 2 In 2 O 3 34 Na 5 InO 4 25 N 2 475/50 NaCuO [19] 2 NaN 3 2 CuO 32 NaCuO 3 N 2 550/80 NaCu 2 O 2 [20] 2 NaN 3 4 CuO 32 NaCu 2 O 2 3 N 2 625/50 Na 4 CoO 4 [21] 8 NaN 3 4 NaNO 2 Co 3 O 4 33 Na 4 CoO 4 14 N 2 550/20 Na 3 NO 3 [10] 4 NaN 3 2 NaNO 3 32 Na 3 NO 3 6 N 2 400/24 K 3 NO 3 [11] 4 KN 3 2 KNO 3 32 K 3 NO 3 6 N 2 420/24 KCuO [22] KNO 2 3 KN 3 2 Cu 2 O 34 KCuO 5 N 2 460/48 NaNiO 2 [23] NaN 3 NaNO 2 2 NiO 32 NaNiO 2 2 N 2 650/10 [b] CsCuO [24] 2 CsN 3 2 CuO 32 CsCuO 3/2 N 2 400/24 Cs 2 ZnO 2 [25] 5 CsN 3 CsNO 3 3 ZnO 33 Cs 2 ZnO 2 8 N 2 410/24 Cs 2 NiO 2 [5] 5 CsN 3 CsNO 3 3 NiO 33 Cs 2 NiO 2 8 N 2 420/50 Rb 2 NiO 2 [5] 5 RbN 3 RbNO 3 3 NiO 33 Rb 2 NiO 2 8 N 2 420/48 RbCuO [26] 2 RbN 3 2 CuO 32 RbCuO 3/2 N 2 450/50 Li 2 NiO 2 [27] 5 LiN 3 LiNO 3 3 NiO 33 Li 2 NiO 2 8 N 2 450/50 LiCuO [22] 2 LiN 3 2 CuO 32 LiCuO 3/2 N 2 450/50 LiTiO 2 [28] LiN 3 TiO 2 3LiTiO 2 3/2 N 2 820/5 [b] LiTi 2 O 4 [29] LiN 3 2 TiO 2 3LiTi 2 O 4 3/2 N 2 820/5 [b] [a] Sample was quenched. [b] Reaction time in days.…”
Section: Dedicated To Professor Edgar Niecke On the Occasion Of His 6mentioning
confidence: 99%
“…These properties make the noncentrosymmetric oxides highly promising for a wide range of applications, such as ferroelectricity,second-order nonlinear optical, actuators and sensors [1][2][3][4]. Among the noncentrosymmetric oxides, the XAgO [X: Li, Na, K, Rb] materials, which are the focus of the present study, are classified as non-polar noncentrosymmetric systems and are known to crystallize in the tetragonal KAgO-type structure under ambient conditions [4][5][6][7]. Some previous studies have reported data on the synthesis and structural features of XAgO [X: Li, Na, K, Rb] compounds [5][6][7].…”
Section: Introductionmentioning
confidence: 99%