We report on the development of a contact-less measurement technique for torsional shear stress τ in ferromagnetic axles or hollow shafts, based on the magneto-elastic effect. In general, two different measuring principles for ferromagnetic materials can be realized, based on: the evaluation of the change of magnetic polarization influenced by shear stress ΔJ(τ) or the change of the magnetic susceptibility ΔχA(τ). The comprehension of the magnetic polarization or the magnetic susceptibility in a sensor concept requires an external magnetic field. Alternating magnetic fields were used as shear stress can disturb not only the amplitude but also the phase distribution of the applied magnetic field. As a result of a torsional moment acting on an axle or hollow shaft, an angle of twist η appears, which is constant over the length of the twisted object. This angle of twist can be understood as a shift of infinitesimal thin cross-sections in which the whole length of the axle is separated. Besides the macroscopic deformation effect, shear forces also affect the Weiss-domains in the micro-scale of the ferromagnetic material. The effects in the micro-scale are the base of the magneto-elastic effect. The combination of the deformation effect in the macro-scale and the deformation of the Weiss-domains in the micro-scale leads to a sophisticated measurement principle for torsional stress in axles or hollow shafts. Magneto-sensitive detectors along or around the measurement object open up the possibility for a contact-less detection of torsional stress in ferromagnetic materials. Besides a strong measuring signal, free from electromagnetic interference, the introduced contact-less measurement principle offers different advantages, like independence from compression strength, nominal tensile stress, impact load, ferromagnetic hysteresis effects and independence of the temperature-dependent electrical conductivity of the axle or hollow shaft. The characteristics of such a type of sensor are considered by a model based on Maxwell’s equations. Besides the chosen design of a contact-less torsion sensor and an experimental set-up, the obtained test results are illustrated and reported in this paper.